If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2+51x=41
We move all terms to the left:
18x^2+51x-(41)=0
a = 18; b = 51; c = -41;
Δ = b2-4ac
Δ = 512-4·18·(-41)
Δ = 5553
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5553}=\sqrt{9*617}=\sqrt{9}*\sqrt{617}=3\sqrt{617}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(51)-3\sqrt{617}}{2*18}=\frac{-51-3\sqrt{617}}{36} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(51)+3\sqrt{617}}{2*18}=\frac{-51+3\sqrt{617}}{36} $
| 5=x+8+2 | | 1/3-n=3/2 | | -6x+5=4x-65 | | 27x=21x-42 | | y=220+200000 | | -1+6x=4x-3 | | 6x13=493x | | (4+3i)*(5-2i)=0 | | 7(−n+12)=6−10(n−6) | | -3(2x-7)=8x+39 | | -5x+8=-4x-9 | | 7(-n+12)=6-10(n-6) | | Y=220x | | 7+23=-5(9x-6) | | -18+28=-2(x+6) | | 3x(x+1.5)=180 | | -18+28=-2(x+6 | | -4-7n+6=16 | | -9(7v-14)=3(-3v-14)+2v | | -8-8n=64 | | 2.1x=9 | | -0.25(12x-20)=5+3x | | y=500(1.08)^6 | | (9x-31/8)-(7x+13/8)=x | | 5e^2=22 | | 76=20h+20 | | 3(4x+5)=-43+10 | | 36+4y-4=13y-10-3y | | 5(5g-20)=30 | | 5(2x+8)=-48+78 | | 8-5(4-3x)=2(4-x)8x | | 5n+3=2n+8 |